PowerShell remoting (WinRM) over HTTPS using a AD CS PKI (CA) signed client Certificate

This is a guide to show you how to enroll your servers/desktops to allow powershell remoting (WINRM) over HTTPS

Assumptions

  • You have a working Root CA on the ADDS environment – Guide
  • CRL and AIA is configured properly – Guide
  • Root CA cert is pushed out to all Servers/Desktops – This happens by default

Contents

  1. Setup CA Certificate template
  2. Deploy Auto-enrolled Certificates via Group Policy
  3. Powershell logon script to set the WinRM listener
  4. Deploy the script as a logon script via Group Policy
  5. Testing
1 – Setup CA Certificate template to allow Client Servers/Desktops to checkout the certificate from the CA

Connect to the The Certification Authority Microsoft Management Console (MMC)

Navigate to Certificate Templates > Manage

On the “Certificate templates Console” window > Select Web Server > Duplicate Template

Under the new Template window Set the following attributes

General – Pick a Name and Validity Period – This is up to you

Compatibility – Set the compatibility attributes (You can leave this on the default values, It up to you)

Subject Name – Set ‘Subject Name’ attributes (Important)

Security – Add “Domain Computers” Security Group and Set the following permissions

  • Read – Allow
  • Enroll – Allow
  • Autoenroll – Allow

Click “OK” to save and close out of “Certificate template console”

Issue to the new template

Go back to the “The Certification Authority Microsoft Management Console” (MMC)

Under templates (Right click the empty space) > Select New > Certificate template to Issue

Under the Enable Certificate template window > Select the Template you just created

Allow few minutes for ADDS to replicate and pick up the changes with in the forest

2 – Deploy Auto-enrolled Certificates via Group Policy

Create a new GPO

Windows Settings > Security Settings > Public Key Policies/Certificate Services Client – Auto-Enrollment Settings

Link the GPO to the relevant OU with in your ADDS environment

Note – You can push out the root CA cert as a trusted root certificate with this same policy if you want to force computers to pick up the CA cert,

Testing

If you need to test it gpupdate/force or reboot your test machine, The Server VM/PC will pickup a certificate from ADCS PKI

3 – Powershell logon script to set the WINRM listener

Dry run

  • Setup the log file
  • Check for the Certificate matching the machines FQDN Auto-enrolled from AD CS
  • If exist
    • Set up the HTTPS WInRM listener and bind the certificate
    • Write log
  • else
    • Write log
#Malinda Rathnayake- 2020
#
#variable
$Date = Get-Date -Format "dd_MM_yy"
$port=5986
$SessionRunTime = Get-Date -Format "dd_yyyy_HH-mm"
#
#Setup Logs folder and log File
$ScriptVersion = '1.0'
$locallogPath = "C:\_Scripts\_Logs\WINRM_HTTPS_ListenerBinding"
#
$logging_Folder = (New-Item -Path $locallogPath -ItemType Directory -Name $Date -Force)
$ScriptSessionlogFile = New-Item $logging_Folder\ScriptSessionLog_$SessionRunTime.txt -Force
$ScriptSessionlogFilePath = $ScriptSessionlogFile.VersionInfo.FileName
#
#Check for the the auto-enrolled SSL Cert
$RootCA = "Company-Root-CA" #change This
$hostname = ([System.Net.Dns]::GetHostByName(($env:computerName))).Hostname
$certinfo = (Get-ChildItem -Path Cert:\LocalMachine\My\ |? {($_.Subject -Like "CN=$hostname") -and ($_.Issuer -Like "CN=$RootCA*")})
$certThumbprint = $certinfo.Thumbprint
#
#Script-------------------------------------------------------
#
#Remove the existing WInRM Listener if there is any
Get-ChildItem WSMan:\Localhost\Listener | Where -Property Keys -eq "Transport=HTTPS" | Remove-Item -Recurse -Force
#
#If the client certificate exists Setup the WinRM HTTPS listener with the cert else Write log
if ($certThumbprint){
#
New-Item -Path WSMan:\Localhost\Listener -Transport HTTPS -Address * -CertificateThumbprint $certThumbprint -HostName $hostname -Force
#
netsh advfirewall firewall add rule name="Windows Remote Management (HTTPS-In)" dir=in action=allow protocol=TCP localport=$port
#
Add-Content -Path $ScriptSessionlogFilePath -Value "Certbinding with the HTTPS WinRM HTTPS Listener Completed"
Add-Content -Path $ScriptSessionlogFilePath -Value "$certinfo.Subject"}
else{
Add-Content -Path $ScriptSessionlogFilePath -Value "No Cert matching the Server FQDN found, Please run gpupdate/force or reboot the system"
}

Script is commented with Explaining each section (should have done functions but i was pressed for time, never got around to do it, if you do fix it up and improve this please let me know in the comments :D)

5 – Deploy the script as a logon script via Group Policy

Setup a GPO and set this script as a logon Powershell script

Im using a user policy with GPO Loop-back processing set to Merge applied to the server OU

Testing

To confirm WinRM is listening on HTTPS, type the following commands:

winrm enumerate winrm/config/listener
Winrm get http://schemas.microsoft.com/wbem/wsman/1/config

Sources that helped me

https://docs.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/configure-winrm-for-https

https://gmusumeci.medium.com/get-rid-of-those-annoying-self-signed-certificates-with-microsoft-certificate-services-part-3-9d4b8e819f45

http://vcloud-lab.com/entries/powershell/powershell-remoting-over-https-using-self-signed-ssl-certificate

Vagrant Ansible LAB Guide – Bridged network

Here’s a is a quick guide to get you started with a “Ansible core lab” using Vagrant.

Alright lets get started

TLDR Version

  • Install Vagrant
  • Install Virtual-box
  • Create project folder and CD in to it
Vagrant init
  • Vagrantfile – link
  • Vagrant Provisioning Shell Script to Deploy Ansible – link
  • Install the vagrant-vbguest plugin to deploy missing
vagrant plugin install vagrant-vbguest
  • Bring up the Vagrant environment
Vagrant up

Install Vagrant and Virtual box

For this demo we are using windows 10 1909 but you can use the same guide for MAC OSX

Windows

Download Vagrant and virtual box and install it the good ol way –

https://www.vagrantup.com/downloads.html

https://www.virtualbox.org/wiki/Downloads

https://www.vagrantmanager.com/downloads/

Install the vagrant-vbguest plugin (We need this with newer versions of Ubuntu)

vagrant plugin install vagrant-vbguest

Or Using chocolatey

choco install vagrant
choco install virtualbox
choco install vagrant-manager

Install the vagrant-vbguest plugin (We need this with newer versions of Ubuntu)

vagrant plugin install vagrant-vbguest

MAC OSX – using Brewcask

Install virtual box

$ brew cask install virtualbox

Now install Vagrant either from the website or use homebrew for installing it.

$ brew cask install vagrant

Vagrant-Manager is a nice way to manage all your virtual machines in one place directly from the menu bar.

$ brew cask install vagrant-manager

Install the vagrant-vbguest plugin (We need this with newer versions of Ubuntu)

vagrant plugin install vagrant-vbguest

Setup the Vagrant Environment

Open Powershell

to get started lets check our environment

vagrant version

Create a project directory and Initialize the environment

for the project directory im using D:\vagrant

Open powershell and run

mkdir D:\vagrant
cd D:\vagrant

Initialize the environment under the project folder

vagrant init

this will create Two Items

.vagrant – Hidden folder holding Base Machines and meta data

Vagrantfile – Vagrant config file

Lets Create the Vagrantfile to deploy the VMs

https://www.vagrantup.com/docs/vagrantfile/

The syntax of Vagrantfiles is Ruby this gives us a lot of flexibility to program in logic when building your files

Im using Atom to edit the vagrantfile

Vagrant.configure("2") do |config|
     config.vm.define "controller" do |controller|
                  controller.vm.box = "ubuntu/trusty64"
                  controller.vm.hostname = "LAB-Controller"
                  controller.vm.network "public_network", bridge: "Intel(R) I211 Gigabit Network Connection", ip: "172.17.10.120"
                    controller.vm.provider "virtualbox" do |vb|
                                 vb.memory = "2048"
                  end
                  controller.vm.provision :shell, path: 'Ansible_LAB_setup.sh'
   end
   (1..3).each do |i|
         config.vm.define "vls-node#{i}" do |node|
                       node.vm.box = "ubuntu/trusty64"
                       node.vm.hostname = "vls-node#{i}"
                       node.vm.network "public_network", bridge: "Intel(R) I211 Gigabit Network Connection" ip: "172.17.10.12#{i}"
                      node.vm.provider "virtualbox" do |vb|
                                                  vb.memory = "1024"
                     end
              end
        end
end

You can grab the code from my Repo

https://github.com/malindarathnayake/Ansible_Vagrant_LAB/blob/master/Vagrantfile

Let’s talk a little bit about this code and unpack this

Vagrant API version

Vagrant uses API versions for its configuration file, this is how it can stay backward compatible. So in every Vagrantfile we need to specify which version to use. The current one is version 2 which works with Vagrant 1.1 and up.

Provisioning the Ansible VM

This will

  • Provision the controller Ubuntu VM
  • Create a bridged network adapter
  • Set the host-name – LAB-Controller
  • Set the static IP – 172.17.10.120/24
  • Run the Shell script that installs Ansible using apt-get install (We will get to this below)

Lets start digging in…

Specifying the Controller VM Name, base box and hostname

Vagrant uses a base image to clone a virtual machine quickly. These base images are known as “boxes” in Vagrant, and specifying the box to use for your Vagrant environment is always the first step after creating a new Vagrantfile.

You can find different base boxes from app.vagrantup.com

Or you can create custom base boxes for pretty much anything including “CiscoVIRL(CML)” images – keep an eye out for the next article on this

Network configurations

controller.vm.network "public_network", bridge: "Intel(R) I211 Gigabit Network Connection", ip: "your IP"

in this case, we are asking it to create a bridged adapter using the Intel(R) I211 NIC and set the IP address you defined on under IP attribute

You can the relavant interface name using

get-netadapter

You can also create a host-only private network

controller.vm.network :private_network, ip: "10.0.0.10"

for more info checkout the network section in the KB

https://www.vagrantup.com/docs/networking/

Define the provider and VM resources

We declaring virtualbox(we installed this earlier) as the provider and setting VM memory to 2048

You can get more granular with this, refer to the below KB

https://www.vagrantup.com/docs/virtualbox/configuration.html

Define the shell script to customize the VM config and install the Ansible Package

Now this is where we define the provisioning shell script

this script installs Ansible and set the host file entries to make your life easier

In case you are wondering VLS stands for V=virtual,L – linux S – server.

I use this naming scheme for my VMs. Feel free to use anything you want; make sure it matches what you defined on the Vagrantfile under node.vm.hostname

!/bin/bash
sudo apt-get update
sudo apt-get install software-propetise-common -y
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible -y
echo "
172.17.10.120 LAB-controller
172.17.10.121 vls-node1
172.17.10.122 vls-node2
172.17.10.123 vls-node3" >> /etc/hosts

create this file and save it as Ansible_LAB_setup.sh in the Project folder

in this case I’m going to save it under D:\vagrant

You can also do this inline with a script block instead of using a separate file

https://www.vagrantup.com/docs/provisioning/basic_usage.html

Provisioning the Member servers for the lab

We covered most of the code used above, the only difference here is we are using each method to create 3 VMs with the same template (I’m lazy and it’s more convenient)

This will create three Ubuntu VMs with the following Host-names and IP addresses, you should update these values to match you LAN, or use a private Adapter

vls-node1 – 172.17.10.121

vls-node2 – 172.17.10.122

vls-node1 – 172.17.10.123

So now that we are done with explaining the code, let’s run this

Building the Lab environment using Vagrant

Issue the following command to check your syntax

Vagrant status

Issue the following command to bring up the environment

Vagrant up

If you get this message Reboot in to UEFI and make sure virtualization is enabled

Intel – VT-D

AMD Ryzen – SVM

If everything is kumbaya you will see vagrant firing up the deployment

It will provision 4 VMs as we specified

Notice since we have the “vagrant-vbguest” plugin installed, it will reinstall the relevant guest tools along with the dependencies for the OS

==> vls-node3: Machine booted and ready!
[vls-node3] No Virtualbox Guest Additions installation found.
rmmod: ERROR: Module vboxsf is not currently loaded
rmmod: ERROR: Module vboxguest is not currently loaded
Reading package lists...
Building dependency tree...
Reading state information...
Package 'virtualbox-guest-x11' is not installed, so not removed
The following packages will be REMOVED:
  virtualbox-guest-utils*
0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
After this operation, 5799 kB disk space will be freed.
(Reading database ... 61617 files and directories currently installed.)
Removing virtualbox-guest-utils (6.0.14-dfsg-1) ...
Processing triggers for man-db (2.8.7-3) ...
(Reading database ... 61604 files and directories currently installed.)
Purging configuration files for virtualbox-guest-utils (6.0.14-dfsg-1) ...
Processing triggers for systemd (242-7ubuntu3.7) ...
Reading package lists...
Building dependency tree...
Reading state information...
linux-headers-5.3.0-51-generic is already the newest version (5.3.0-51.44).
linux-headers-5.3.0-51-generic set to manually installed.

Check the status

Vagrant status

Testing

Connecting via SSH to your VMs

vagrant ssh controller

“Controller” is the VMname we defined before not the hostname, You can find this by running Vagrant status on posh or your terminal

We are going to connect to our controller and check everything

Little bit more information on the networking side

Vagrant Adds two interfaces, for each VM

NIC 1 – Nat’d in to the host (control plane for Vagrant to manage the VMs)

NIC 2 – Bridged adapter we provisioned in the script with the IP Address

Default route is set via the Private(NAT’d) interface (you cant change it)

Netplan configs

Vagrant creates a custom netplan yaml for interface configs


Destroy/Tear-down the environment

vagrant destroy -f

https://www.vagrantup.com/intro/getting-started/teardown.html

I hope this helped someone. when I started with Vagrant a few years back it took me a few tries to figure out the system and the logic behind it, this will give you a basic understanding on how things are plugged together.

let me know in the comments if you see any issues or mistakes.

Until Next time…..

Azure AD Sync Connect No-Start-Connection status

Issue

Received the following error from the Azure AD stating that Password Synchronization was not working on the tenant.

When i manually initiate a delta sync, i see the following logs

"The Specified Domain either does not exist or could not be contacted"

(click to enlarge)

Checked the following

  • Restarted ADsync Services
  • Resolve the ADDS Domain FQDN and DNS – Working
  • Test required ports for AD-sync using portqry – issues with the Primary ADDS server defined on the DNS values

Root Cause

Turns out the Domain controller Defined as the primary DNS value was pointing was going thorough updates, its responding on the DNS but doesn’t return any data (Brown-out state)

Assumption

when checking DNS since the DNS server is connecting, Windows doesn’t check the secondary and tertiary servers defined under DNS servers.

This might happen if you are using a ADDS server via a S2S tunnel/MPLS when the latency goes high

Resolution

Check make sure your ADDS-DNS servers defined on AD-SYNC server are alive and responding

in my case i just updated the “Primary” DNS value with the umbrella Appliance IP (this act as a proxy and handle the fail-over)

MS Exchange 2016 [ERROR] Cannot find path ‘..\Exchange_Server_V15\UnifiedMessaging\grammars’ because it does not exist.


So recently I ran into this annoying error message with Exchange 2016 CU11 Update.

Environment info-

  • Exchange 2016 upgrade from CU8 to CU11
  • Exchange binaries are installed under D:\Microsoft\Exchange_Server_V15\..
Microsoft.PowerShell.Commands.GetItemCommand.ProcessRecord()". [12/04/2018 16:41:43.0233] [1] [ERROR] Cannot find path 'D:\Microsoft\Exchange_Server_V15\UnifiedMessaging\grammars' because it does not exist. 
[12/04/2018 16:41:43.0233] [1] [ERROR-REFERENCE] Id=UnifiedMessagingComponent___99d8be02cb8d413eafc6ff15e437e13d Component=EXCHANGE14:\Current\Release\Shared\Datacenter\Setup
[12/04/2018 16:41:43.0234] [1] Setup is stopping now because of one or more critical errors. [12/04/2018 16:41:43.0234] [1] Finished executing component tasks.
[12/04/2018 16:41:43.0318] [1] Ending processing Install-UnifiedMessagingRole
[12/04/2018 16:44:51.0116] [0] CurrentResult setupbase.maincore:396: 0 [12/04/2018 16:44:51.0118] [0] End of Setup
[12/04/2018 16:44:51.0118] [0] **********************************************

Root Cause

Ran the Setup again and it failed with the same error
while going though the log files i notice that the setup looks for this file path while configuring the "Mailbox role: Unified Messaging service" (Stage 6 on the GUI installer)

$grammarPath = join-path $RoleInstallPath "UnifiedMessaging\grammars\*";

There was no folder present with the name grammars under the Path specified on the error

just to confirm, i checked another server on CU8 and the grammars folder is there.

Not sure why the folder got removed, it may have happened during the first run of the CU11 setup that failed,

Resolution

My first thought was to copy the folder from an existing CU8 server. but just to avoid any issues (since exchange is sensitive to file versions)
I created an empty folder with the name "grammars" under D:\Microsoft\Exchange_Server_V15\UnifiedMessaging\




Ran the setup again and it continued the upgrade process and completed without any issues...¯\_(ツ)_/¯











[12/04/2018 18:07:50.0416] [2] Ending processing Set-ServerComponentState
[12/04/2018 18:07:50.0417] [2] Beginning processing Write-ExchangeSetupLog
[12/04/2018 18:07:50.0420] [2] Install is complete. Server state has been set to Active.
[12/04/2018 18:07:50.0421] [2] Ending processing Write-ExchangeSetupLog
[12/04/2018 18:07:50.0422] [1] Finished executing component tasks.
[12/04/2018 18:07:50.0429] [1] Ending processing Start-PostSetup
[12/04/2018 18:07:50.0524] [0] CurrentResult setupbase.maincore:396: 0
[12/04/2018 18:07:50.0525] [0] End of Setup
[12/04/2018 18:07:50.0525] [0] **********************************************

Considering cost of this software M$ really have to be better about error handling IMO, i have run in to silly issues like this way too many times since Exchange 2010.


IP version 6 with Dual-stack using a Tunnel broker 6in4 – PFSense/ASA -Part 01

If your ISP doesn’t have Native IP version 6 Support with Dual Stack  here is a workaround to get it setup for your home lab enviroment

What you need

> Router/Firewall/UTM that supports IPv6 Tunneling

  • PFsense/OpenSense/VyOS
  • DD-WRT 
  • Cisco ISR
  • Juniper SRX

> Active Account with an Ipv6 Tunnel Broker

      For this example we are going to be using Hurricane Electric Free IPv6 Tunnel Broker

Overview of the setup

For part 1 of this series  we are going to cover the following

  • Dual Stack Setup
  • DHCPV6 configuration and explanation

– Guide –

I used my a Netgate router running PfSense to terminate the 6in4 tunnel.it adds the firewall and monitoring capabilities on your Ipv6 network

Before we begin, we need to make a few adjustments on the firewall

Allow IPv6 Traffic

On new installations of pfSense after 2.1, IPv6 traffic is allowed by default. If the configuration on the firewall has been upgraded from older versions, then IPv6 would still be blocked. To enable IPv6 traffic on PFsense, perform the following:

  • Navigate to System > Advanced on the Networking tab
  • Check Allow IPv6 if not already checked
  • Click Save

Allow ICMP

ICMP echo requests must be allowed on the WAN address that is terminating the tunnel to ensure that it is online and reachable.

Firewall> Rules > WAN
Create a regular tunnel.

Enter your IPv4 address as the tunnel’s endpoint address.

Note – After entering your IPv4 address, the website will check to make sure that it can ping your machine. If it cannot ping your machine, you will get an error like the one below:

You can access the tunnel information from the accounts page

While you are here go to “Advance Tab” and setup an “Update key”. (We need it later)

Create and Assign the GIF Interface

Next, create the interface for the GIF tunnel in pfSense. Complete the fields with the corresponding information from the tunnel broker configuration summary.

  • Navigate to Interfaces > (assign) on the GIF tab.
  • Click fa-plus Add to add a new entry.
  • Set the Parent Interface to the WAN where the tunnel terminates. This would be the WAN which has the Client IPv4 Address on the tunnel broker.
  • Set the GIF Remote Address in pfSense to the Server IPv4 Address on the summary.
  • Set the GIF Tunnel Local Address in pfSense to the Client IPv6 Address on the summary.
  • Set the GIF Tunnel Remote Address in pfSense to the Server IPv6 Address on the summary, along the with prefix length (typically / 64).
  • Leave remaining options blank or unchecked.
  • Enter a Description.
  • Click Save.

Example GIF Tunnel.

Assign GIF Interface

Click fa-plus on Interfaces > (Assignments)

choose the GIF interface to be used for an OPT interface. In this example, the OPT interface has been renamed WAN_HP_NET_IPv6. Click Save and Apply Changes if they appear.

 

Configure OPT Interface

With the OPT interface assigned, Click on the OPT interface from the Interfaces menu to enable it  Keep IPv6 Configuration Type set to None.

Setup the IPv6 Gateway

When the interface is configured as listed above, a dynamic IPv6 gateway is added automatically, but it is not yet marked as default.

  • Navigate to System > Routing
  • Edit the dynamic IPv6 gateway with the same name as the IPv6 WAN created above.
  • Check Default Gateway.
  • Click Save.
  • Click Apply Changes.
 
Status > Gateways to view the gateway status. The gateway will show as “Online” if the configuration is successful

Set Up the LAN Interface for IPv6

The LAN interface may be configured for static IPv6 network. The network used for IPv6 addressing on the LAN Interface is an address in the Routed /64 or /48 subnet assigned by the tunnel broker.

  • The Routed /64 or /48 is the basis for the IPv6 Address field

For this exercise we are going to use ::1 for the LAN interface IP from the Prefixes provided above

Routed /64 : 2001:470:1f07:79a::/64

Interface IP – 2001:470:1f07:79a::1

Set Up DHCPv6 and RA (Router Advertisements)

Now that we have the tunnel up and running we need to make sure devices behind the lan interface can get a IPv6 address

There are couple of ways to handle the addressing

Sateless Auto Address Configuration (SLAAC)

SLAAC just means Stateless Auto Address Configuration, but it shouldn’t be confused with Stateless DHCPv6. In fact, we are talking about two different approaches.

SLAAC is the simplest way to give an IPv6 address to a client, because it exclusively rely on Neighbor Discovery Protocol. This protocol, that we simply call NDP, allows devices on a network to discover their Layer 3 neighbors. We use it to retrieve the layer 2 reachability information, like ARP, and to find out routers on the network.

When a device comes online, it sends a Router Solicitation message. It’s basically asking “Are there some routers out there?”. If we have a router on the same network, that router will reply with a Router Advertisement (RA) message. Using this message, the router will tell the client some information about the network:

  • Who is the default gateway (the link-local address of the router itself)
  • What is the global unicast prefix (for example, 2001:DB8:ACAD:10::/64)

With these information, the client is going to create a new global unicast address using the EUI-64 technique. Now the client has an IP address from the global unicast prefix range of the router, and that address is valid over the Internet.

This method is extremely simple, and requires virtually no configuration. However, we can’t centralize it and we cannot specify further information, such as DNS settings. To do that, we need to use a DHCPv6 technique

Just like IP v4 we need to setup DHCP for the IPv6 range for the devices behind the firewall to use SLAAT

Stateless DHCPv6

Stateless DHCPv6 brings to the picture the DHCPv6 protocol. With this approach, we still use SLAAC to obtain reachability information, and we use DHCPv6 for extra items.

The client always starts with a Router Solicitation, and the router on the segment responds with a Router Advertisement. This time, the Router Advertisement has a flag called other-config set to 1. Once the client receives the message, it will still use SLAAC to craft its own IPv6 address. However, the flag tells the client to do something more.

After the SLAAC process succeed, the client will craft a DHCPv6 request and send it through the network. A DHCPv6 server will eventually reply with all the extra information we needed, such as DNS server or domain name.

This approach is called stateless since the DHCPv6 server does not manage any lease for the clients. Instead, it just gives extra information as needed.

Configuring IPv6 Router Advertisements

Router Advertisements (RA) tell an IPv6 network not only which routers are available to reach other networks, but also tell clients how to obtain an IPv6 address. These options are configured per-interface and work similar to and/or in conjunction with DHCPv6.

DHCPv6 is not able to send clients a router for use as a gateway as is traditionally done with IPv4 DHCP. The task of announcing gateways falls to RA.

Operating Mode: Controls how clients behave. All modes advertise this firewall as a router for IPv6. The following modes are available:

  • Router Only: Clients will need to set addresses statically
  • Unmanaged: Client addresses obtained only via Stateless Address Autoconfiguration (SLAAC).
  • Managed: Client addresses assigned only via DHCPv6.
  • Assisted: Client addresses assigned by either DHCPv6 or SLAAC (or both).

Enable DHCPv6 Server on the interface

Setup IPv6 DNS Addresses

we are going to use cloud-flare DNS (At the time of writing CF is rated as the fastest resolver by Thousandeyes.com)

https://developers.cloudflare.com/1.1.1.1/setting-up-1.1.1.1/

1.1.1.1

  • 2606:4700:4700::1111
  • 2606:4700:4700::1001

Keeping your Tunnel endpoint Address Updated with your Dynamic IP

This only applies if you have a dynamic IPv4 from your ISP

As you may remember from our first step when registering the 6in4 tunnel on the website we had to enter our Public IP and enable ICMP

We need to make sure we keep this updated when our IP changes ovetime

There are few ways to accomplish this

  • Use PFsense DynDNS feature 

dnsomatic.com  is wonderful free service to update your dynamic IP on multiple locations, i used this because if needed i have the freedom to change routers/firewalls with out messing up my config (Im using a one of my RasPi’s to update DNS-O-Matic)

im working on another article for this, will link it to this section ASAP

 

Few Notes –

Android OS, Chrome OS still doesn’t support DHCPv6

Mac OSX and windows 10, Server 2016 uses and prefers Ipv6

Check the windows firewall rules if you have issues with NAT rules and manually update rules

Your MTU will drop-down since you are sending the IPv6 headers encapsulated in the Ipv4 packets.Personally i have no issues with my Ipv6 network Behind a spectrum DOCSIS modem. but this may cause issues depending on your ISP ie : CGNat

Here is a good write up https://jamesdobson.name/post/mtu/

 

Part 2

With Part two of this series we will use an ASA for IPv6 using the PFsense router as an tunnel-endpoint

Example Network

Link spotlight

– Understanding IPv6 EUI-64 Bit Address

– IPv6 Stateless Auto Configuration

– Configure the ASA to Pass IPv6 Traffic

– Setup IPv6 TunnelBroker – NetGate

– ipv6-at-home Part 1 | Part II | Part III

Until next time….